
Using Matlab And Simulink In SystemC Verification
Environment By JPEG Algorithm

Abstract— This paper presents the co-simulation interface
matlab and systemC methodology, the development and
modeling of a JPEG algorithm using this co-simulation
interface. This Hardware/Software co-design technique is
applied to the JPEG compression algorithm which has many
implementations in recent video real time application. Time to
market is the very important factor for development of such
applications. The results obtained by modeling the hardware
and software JPEG modules using our approach, indicate that
the execution time was reduced by 85%.

I. INTRODUCTION

Hardware/software [1, 2] co-designs consist of different
aspects such as specification, modeling, partitioning,
performance estimation, interface performance and co-
simulation. This latter is the objective of our work [3]. It
concerns essentially communicating and synchronizing two
simulators such as matlab and systemC. Actually, these
techniques are used in so varied applications such as the
postproduction in television and cinema, the broadcasting and
the video surveillance. Their speciality is the realization of
solution of video coding with an objective of real time.
SystemC [4], a modeling language is useful for representing
the hardware and the software components of a system.
SystemC is based on C++ and includes a set of classes to
model hardware components and a simulation kernel. The
design environment specifies software algorithmically as a set
of functions located in modules. The MATLAB [5]
environment is a high-level technical computing language for
algorithm development, data visualization, data analysis and
numerical computing. One of the key features of this tool is
the integration ability with other languages and third-party
applications. MATLAB also includes the Simulink graphical
environment used for multi-domain simulation and model-
based design. Signal processing designers take advantage of
Simulink as it offers a good platform for preliminary
algorithmic exploration and optimization.

This paper presents a structure of check based on a new
interface of co-simulation between systemC and simulink of
matlab environment to improve the bottleneck of check of
material. We are going to test our platform on video
compression JPEG algorithm.

In this paper, we first discuss the related work in section 2
and in section 3, we present a methodology of co-simulation.
In section 4, we propose the application of compression video
JPEG. We give the results of co-simulation in section 5.
Finally, we conclude and suggest some recommendations for
future works.

II. RELATED WORK

DSP [5] applications regularly requires complex
environment to competently simulate and verify the design.
For example real world telecommunication stimuli are needed
to truly exercise the design. In addition, the criteria used to
evaluate performances are quantitative measures such as
least-mean-square, bit-error rate, and others. It is little
flexible and time consuming to implement these criteria
directly into HDL or C++ testbenches. There are three main
components for verification framework: SystemC verification
standard, Transaction based verification and MATLAB and
Simulink.

The principal core element of the verification platform is
SystemC. It is important to understand that SystemC is the
language to use whether for the conception or the check. Test
code is written with SystemC to produce scalable and
intelligent testbenches. Since the design below verification
can be represented at multiple levels of abstraction,
transactors are used to bridge the abstraction gap. Creating
and maintaining testbenches in a higher abstraction level is
naturally faster than HDL simulator and can be reused across
abstraction levels.

Next, we use MATLAB and Simulink in the verification
flow. The verification framework takes this into consideration
and uses Mathworks tool to assist the SystemC testbench. By
this way, each tool and language is used for its intended
purpose.

III. METHODOLOGIE

Using MATLAB and Simulink to assist SystemC
verification framework relies on co-simulating the two
environments. The co-simulation interface must give
adequate capabilities and reasonable simulation speeds. Our
solution is based on the MATLAB engine interface. The data

Walid Hassairi, Moncef Bousselmi, Mohamed ABID
CES Laboratory

National Engineering School of Sfax
Email: hassairi1@yahoo.fr , moncef.bousselmi@fss.rnu.tn,

mohamed.abid@enis.rnu.tn

Carlos Valderrama Sakuyama

School polytechnique of
Mons, Belgium

Email:
carlos.valderrama@fpms.ac.be

are directly exchanged by the memory on both sides. Both
simulators obtain the optimal speed by guarding the interface
and the protocol as simple as possible. This section presents
the implementation details of this interface.

A. SystemC calls MATLAB

The base of our platform is the transfer of data between
SystemC and MATLAB [6]. For that reason, we use the
‘engine’ library that is available with MATLAB. The work
described uses a similar interface. The difference is that we
employ this interface in a verification context. In addition, we
will show in the following section how we significantly
improve the interface to communicate with Simulink.

The ‘engine’ library contains nine routines for controlling
MATLAB computation engine from a C program. On
Microsoft Windows, the engine library communicates with
MATLAB using a Component Object Model (COM)
interface.

A SystemC module employs these routines to remotely
control MATLAB and exchange data back and forth between
SystemC and MATLAB workspace.

B. SystemC calls Simulink

To exchange data between a Simulink model and SystemC
module, the co-simulation interface must integrate a bridge
between the two simulators [6]. This bridge is built with two
Simulink S-Functions. An S-Function is a computer language
description of a Simulink block. It uses syntax of call thus we
can interact with Simulink solvers. For our bridge, we create
two C++ S- Functions. Figure 1 gives an overview of how a
Simulink model and S-Functions are connected together.

Fig .1. The model with n-input source and m-output sink in s-function
blocks

The ‘source’ S-Function reads data from MATLAB
workspace [4] written with SystemC and sends the
corresponding signals in Simulink. On the other hand, the
‘sink’ S-Function reads its inputs and update the
corresponding variables in MATLAB workspace so it can be
read back by SystemC. Equally, S-Functions includes a

configurable burst mode option to support variable width data
burst transfers.

C. Simulator synchronization

The representation of simulation time differs significantly
from SystemC and Matlab. SystemC is cycle-based simulator
and simulation occurs at multiples of the SystemC resolution
limit. The default time resolution is 1 picoseconds; this can be
changed with function sc_set_time_resolution. Simulink
maintains simulation time as a double-precision value scaled
to seconds. Our co-simulation interface uses a one-to-one
correspondence between simulation time in Simulink and
SystemC. The Simulink solver is set to discrete fixed-step
type, this means that one time step in Simulink correspond to
one tick in SystemC.

As mentioned previously, SystemC is the boss of the
simulation and Simulink is controlled from SystemC by the
interface of co-simulation. SystemC uses set_param to start,
stop and continue the execution of Simulink. The simulation
is suspended every time by S-Function. The same command
set_param is used at the end of the S- Function, but with the
argument 'pause'. On the other hand, SystemC asks the status
Simulink with the command get_param to synchronize both
simulators.

IV. JPEG COMPRESSION ALGORITHM

The JPEG encoder consists of modules for color
converting, DCT (Discrete Cosine Transformation),
quantizing, and encoding [7]. The DCT processes two-
dimensional still images as a combination of two-dimensional
frequency components to compress image data.

The JPEG encoder requires repetitive DCT calculations
which are time consuming. Therefore, DCT calculation was
selected as a target for replacing by hardware. The JPEG
software is used in the experiment and based on the source
program distributed by the independent JPEG group (IJG)
[8]. We extracted the minimum set of the JPEG encoder
functions and prepared the SW modules by SystemC in
advance. The RGB format images were used in this
experiment.

- RGB-YCbCr color conversion: A 16*16 RGB image is
converted into four 8*8 blocks of Y (luminosity) and two 8*8
blocks of Cr and Cb (color difference).

- Calculation of DCT coefficient: Two-dimensional DCT
coefficient F(u,v) corresponding to each Y, Cr and Cb are
obtained using one-dimensional DCT calculation twice using
the formula shown in Figure2.

- Quantizer: Each DCT coefficient is divided by the
corresponding value in the quantization table to remove high-
frequency ingredients.

- Huffman encoder: DCT coefficient information is
compressed and the JPEG picture form is edited by adding a
quantization table, frame header, etc.

In this chain, we have made many calculations.

Fig. 2. Configuration of JPEG encoder including DCT

V. RESULTS

SystemC is an open source simulator . Its language
represents an extension by classes of the directed language
object C ++ for the description of digital systems. It allows
the description level RTL, as it is the system level (SystemC
2.0 and the later versions) for the systems implemented in
software, hardware or the combination of both. A SystemC
model can be compiled, executed and debugged by using the
standard tools of C++ programming. Compared with other
languages of hardware description such as VHDL and
Verilog, SystemC supports a large number of description
domains which allow it to supply a specification of the
system at high levels of abstraction and with a better speed of
simulation. To create a configurable and customizable block,
we are going to use S - Function. This latter supplies a
powerful mechanism to spread the capacities of Simulink.
The S- Function is then used as any block of the Simulink
library.

The S - functions uses a special call syntax which allows
interacting with the engine of resolution of Simulink
equations. This interaction is very similar to the interaction
between the engine and the other Simulink blocks.

With the built-in debugger, it is possible to attach the
MATLAB process to the current SystemC simulation.

The mult16 function of implemented SW/SW takes 3753
clock cycles. It consumes a total of 1114641 clock cycles.

These major accounts of clock cycle represent 82.89 % of the
total time execution of the JPEG algorithm.

The figure 3 shows the implementation HW/SW of the
JPEG proposed architecture. This implementation has a
treatment unit to execute the software part of the DCT
algorithm and a hardware module to execute multiplications
of the JPEG compression algorithm. The processing unit has
a microprocessor, RAM and ROM.

The modified portion of the DCT algorithm without
multiplications is stored into the ROM.

Fig .3. Block diagram of the proposed HW/SW jpeg implementation

The HW/SW implementation reduces the number of clock
cycle from 1334722 to 200209.The implementation of the
mult16 function in hardware reduced by 99.5% the number of
clock cycles required to perform the 16-bit multiplication.
The reduction on the total execution time of the JPEG
algorithm is 85%.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a check structure based on a
new co-simulation interface between SystemC, MATLAB
and the Simulink environment. This platform can be used to
help the check of DSP cores design. By using MALTAB and
Simulink environment, we improved the SystemC capability
of material check and the time to market decrease.

The proposed plateform is tested on the JPEG
compression algorithm. The execution time of such algorithm
is improved by 85% due to the hardware implementation of
the Matlab mult16 Function using SystemC. As future works,
we aim to test our platform with the whole video compression
chain using MPEG4 modules.

VII. REFERENCES

[1] A. Avila, “Hardware/Software Implementation of a Discrete
Cosine Transform Algorithm Using SystemC” Proceedings of the
2005 International Conference on Reconfigurable Computing and
FPGAs (ReConFig 2005)

[2] M.Abid, A. Changuel, A. Jerraya,” Exploration of
Hardware/Software Design Space through a Codesign of Robot Arm
Controller” EURO-DAC '96 with EURO-VHDL '96 pp 17-24

[3] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, M.
Poncino, “SystemC Cosimulation and Emulation of Multiprocessor
SoC designs,” Computer Magazine, April 2003 pp: 53 – 59

[4] The Open SystemC Initiative (OSCI) http://www.systemc.org

[5] J.F. Boland “Using MATLAB and Simulink in a SystemC
Verification Environment”, Proc. of Design and Verification
Conference & Exhibition, San Jose, Californie, Février 2005

 [6] C. Warwick, “SystemC calls MATLAB”, MATLAB Central,
March 2003, http://www.mathworks.com/matlabcentral/

[7] Hiroyasu Mitsui “A Student Experiment Method for Learning
the Basics of Embedded Software Development Including HW/SW
Co-design” 22nd International Conference on Advanced Information
Networking and Applications – Workshops 2008 pp.1367-1376

[8] Independent JPEG Group, http://www.ijg.org

