
Hierarchical Modeling with dynamic Priority Time Petri Nets for
Multiprocessor Scheduling Analysis

Walid Karamti1, Adel Mahfoudhi1, and Yessine Hadj Kacem1

1CES Laboratory, ENIS Soukra km 3,5, University of Sfax,
B.P.:w 1173-3000 Sfax TUNISIA

Abstract— Dynamic Priority Time Petri Nets (dPTPN) rep-
resent a powerful formalism for the scheduling analysis of
Real-Time Systems running on Multiprocessor architecture.
The originality of the dPTPN semantics, compared to the
existing research work, is the dynamic calculation of the
priority of transitions in conflict.
The present paper presents a new modeling strategy with
dPTPN based on object modeling concept. Thus, a new
component is proposed and the scheduling model is consti-
tuted with different instances of it. The scheduling is assured
through the Earliest Deadline First with a set of dependent
tasks. We prove the capacity of our approach to detect the
non-schedulable sequences via an experiment.

Keywords: Real-Time System; Scheduling analysis; EDF; dPTPN

1. Introduction
Multiprocessor architectures are becoming increasingly

used in several systems such as the Real-Time system
(RTS). It can explain the growth of the variety of research
results. The main research area is the scheduling analysis
of the real-time application running on a multiprocessor
architecture. Hence, two main scheduling families exist. The
first family is called the global scheduling in which all
the tasks are charged on only one queue. In fact, although
each task can migrate among the processor resources to
achieve its execution, the cost of migration is so important
and there are no optimal scheduling algorithm [16]. As
for the second family, it is the partitioned scheduling in
which each processor resource has its own queue. When
a task is assigned to one processor, then it cannot migrate
to another. In fact, this strategy presents a reduction of
the multiprocessor scheduling to single-processor where the
optimality is proved [19].
The partitioned scheduling is based on two procedures, the
first of which is assigning tasks to processors and the second
is analyzing the scheduling of each partition [20]. It is so
important to detect the scheduling faults at an early stage in
order to minimize the costs for its correction.
Therefore, to protect such systems from problems and fail-
ure, it is necessary to implement formal techniques intended
to make reliable the development process of the real-time
applications, from their design to checking. This allows
designers to accurately validate systems, and check the

required properties of their behavior.
The choice of the adequate formal method from the existing
varieties depends on the characteristics of the considered
system and the properties to check. The technique of model
checking is of an irrefutable advantage, allowing early and
economical detection of errors at an early stage of the design
process. This explains the growing popularity it enjoys in the
industrial world.
Particularly, Petri Nets (PNs) presents an appropriate model
checking thanks to their great expressivity dynamic vision
and executable aspect. Besides, they have been successfully
used in RTS specification. Thus, it is interesting to use the
PNs for the scheduling analysis of an RTS running on a
Multiprocessor architecture.
The Multiprocessor scheduling analysis with PNs is a recent
research area, which explains the scarcity of Petri Nets
dealing with it. The dynamic priority presents a primor-
dial factor in the Multiprocessor scheduling [11] but we
distinguish a limitation of PNs extensions that support it
is distinguished. It can be explained by the difficulty to
introduce such characteristic in PNs. In what follows, we
present the PNs extensions with fixed priority and next we
detail the existing extension with dynamic priority.
The STPN [24] is a temporal PNs extension dedicated to
analyze periodic tasks on a multiprocessor architecture. It is
able to support a fixed priority scheduling policy such as RM
(Rate Monotonic) [19] thanks to the use of the inhibitor arcs.
The contribution of its proposal lies in the calculation of a
reduced state space compared to that evoked by [3]. Such
proposal has been improved by [18] and [17] to support the
tasks with variable time execution.
Before the crossing of transitions, the STPN [24] adds con-
straints to check the respect for the firing interval. Therefore,
the check of these constraints is a new dimension added to
the problem of scheduling analysis.
The PrTPNs (Priority Time Petri Nets) [4] also utilized the
inhibitor arcs to present the notion of fixed priority. The
authors propose a method of temporal analysis of the net-
work. Indeed, from a sequence of non-temporal transitions,
his method was to recover the possible durations between the
firing of transitions in order. The durations are the solutions
of a linear programming problem.
Both of PrTPN and STPN present the priority through
the inhibitors arcs added as new components to those of

PNs. The RTS modeling with Petri nets gives rise to the
models that are often complex. Moreover, the addition of an
inhibitor arc makes the model more complex and therefore
the extraction of properties more difficult.
A new extension PTPN (Priority Time Petri Nets) was
proposed in [12], in which a crossing date is associated with
each temporal event. In fact, a transition is valid when the
clock shows the date of firing. In addition, PTPN uses a
new method of priorities integration to address the problem
of transitions conflict. In this method, a priority is inserted
on the input arcs of the dependent transitions [12]. Moreover,
this method allows to master the complexity of the PTPN
model by eliminating the use of another component, such as
inhibitor arcs, to specify priorities.
In [13], the authors have proposed the first PNs extension
dPTPN (dynamic Priority Time Priority Time Petri Nets)
dealing with dynamic priority via a new component. Indeed,
the priority is relative to model state. The scheduling analysis
is shown through the scheduling policy LLF (Least Laxity
First) [8] and a set of independent periodic tasks running
on a multiprocessor architecture. However, the LLF is not
frequently used in practice because the cost of preemption is
so high compared to the Earliest deadline First (EDF) [19].
In the same vein, the authors have proven the capacity of the
dPTPN to deal with EDF as well as with the dependent tasks
in [14]. However, the size and the complexity is increased
even though the considered RTS is more complex. Hence,
the execution of the model and the checking of its properties
is more difficult.
The main contribution in this paper is the proposition of
a new modeling strategy to master the complexity of the
dPTPN Model. Building on Object modeling, we propose a
new dPTPN component and identify how it can be instanced
to specify the scheduling analysis model.
The present paper is organized as follows. Firstly, we start
with presenting the experimentation (robot footballer) in sec-
tion 2. Next, the definitions of the dPTPN and its semantics
are detailed in section 3. Next, section 4 shows the Object
modeling approach and the creation of a new component.
In this section, the modeling of the experiment is shown
with different instances of the new component. In section 5,
we present the dPTPN Scheduling analysis tool (dPTPNS).
Finally, the proposed approach is briefly outlined and future
perspectives are given.

2. Robot footballer experimentation
The experiment presents a football player robot appli-

cation [22] in which the video tasks for object detection,
wireless communications for message exchanging with other
devices, motors controls, sensor acquisition, image process-
ing and decision computation are included. The studied
system is composed of four major parts:
• Acquiring and processing image. It is handled through

tasks T2, T5, T7, T8 and T9;

• Communication HF: The information exchanges be-
tween the robot, the players and coaches are made by
the following tasks: T1, T4,

• T6 and T12. Knowing that while T12 is used to send
data, T1, T4 and T6 are used for reception;

• Data fusion by task T10 and path computation through
T11;

• Control of location: it is done through the new trajec-
tory coordinates calculated by the task T11 and through
the current robot position. The location is computed
through task T3. Thereafter, T13 controls the motors;

The dependencies between the 13 studied tasks are defined
in Fig. 1 as follows: As for the system architecture, it is com-

Fig. 1: Task graph of Robot footballer application

posed of four processors. In addition, the robot architecture
includes a set of memories: cache memory, DMA and RAM.
It also covers a battery and a communication bus.
The system Ω presents the scheduling formal specification of
the robot footballer experiment. It is defined by the 4-tuplet:

Ω = 〈Task, Proc, Alloc, Prec〉 (1)

with:
• Task : {T1, T2, · · · , T13},

each Taski ∈ Task is determined by

Taski = 〈Ri, Pi, Ci〉 (2)

– Ri: the date of the first activation.
– Pi: the period associated with the task.
– Ci: the execution period of the task for the Pi

period.
• Proc : {P1, P2, P3, P4}.
• Alloc : Task 7→ Proc, a function which allocates a

task to a processor. Alloc is a surjective function. In
fact a processor is allocated to at least one task. But a
task must be assigned to only one processor.

• Prec : Task × Task 7→ {0, 1}, a function which
initializes precedence relations between tasks.

3. dynamic Priority Time Petri Nets -
Preliminaries

The integration of the dynamic calculation of priorities in
Petri Nets presents the ultimate objective of the dPTPN [13].
In fact, to solve the conflict problem of enabled transitions,

the priority changes at runtime according to the Nets state.
The dPTPN distinguishes between temporal and concurrent
events that are sources of conflict. Indeed, two types of
transitions T (temporal transition Fig. 2) and Tcp (compound
transition Fig. 3) are proposed.

Fig. 2: T-Transition [13] Fig. 3: Tcp-Transition [13]

With respect to temporal transition T (Fig. 2) is an ordinary
PNs transition with a firing date presented with an integer
value between braces. This presentation of Time is dedicated
to deterministic Real Time Systems [12], [21], [13].
As for the second type of transitions, Tcp (Fig. 3), is a
transition with a preprocessing that precedes the crossing
to calculate its priority. In fact, when two Tcp transitions
are enabled and share at least a place in entry then the
preprocessing is made to determine the transition which will
be fired, with a priority changing according to the state of
the network described by the marking M.
We start with the presentation of the dPTPN formal defini-
tion, then we explain the semantic of execution. Next, we
have shown the internal behavior of real-time task with the
dPTPN.

3.1 Formal Definition
A Petri Net [23] can be defined as 4-tuplet :

PN = 〈P, T, B, F 〉 (3)

, where:
(1) P = {p1, p2, ..., pn} is a finite set of places n > 0;
(2) T = {t1, t2, ..., tm} is a finite set of transition m > 0
(3) B : (P × T) 7→ N is the backward incidence function;
(4) F : (P × T) 7→ N is the forward incidence function;
Each system state is represented by a marking M of the net
and defined by : M : P 7→ N.
The dPTPN is defined by the 7-tuplet :

dPTPN =
〈
PN, Tcp, Tf , BTcp

, FTcp
, coef,M0

〉
(4)

(1) PN : is a Petri Net;
(2) Tcp = {Tcp1 , Tcp2 , · · · , Tcpk

}: is a finite set of compound
transition k > 0;
(3) Tf : T 7→ Q+ is the firing time of a transition.
∀t ∈ T , t is a temporal transition ⇐⇒ Tf (t) 6= 0.
If Tf (t) = 0, then t is an immediate transition. Each
temporal transition t is coupled with a local clock (Hl (t)),
with Hl : T −→ Q+.
(4) BTcp

: (P × Tcp) 7→ N is the backward incidence
function associated with compound transition;
(5) FTcp

: (P ×Tcp) 7→ N is the forward incidence function

associated with compound transition;
(6) coef : (P × Tcp) 7→ Z is the coefficient function
associated with compound transition;
(7) M0 : is the initial marking;
The semantics of firing in dPTPN is based on the partial
order theory [2], [15], [6] building on a relation of equiv-
alence between various sequences of possible crossings,
starting from the same state. In fact, when two sequences are
found to be equivalent, then only one of them is selected.
This relation of equivalence is based on the notion of
independence of transitions.
The dPTPN semantics is presented with a dPTPN firing
machine (dPFM). For each marking M , the dpfm initializes
a set of transitions dFTs composed of enabled temporal
transitions FTs and enabled compound transitions FTsTcp

.
The initializations is called Firiability processing.

dFTs = FTs ∪ FTsTcp
. (5)

let t ∈ T, t ∈ dFTs ⇔ t ∈ FTs ∨ t ∈ FTsTcp
(6)

with
{

FTs = {t ∈ T/B (. , t) ≤M}
FTsTcp

=
{
t ∈ T/BTcp

(. , t) ≤M
}

Next, valid transitions are selected from FTs to V Ts by
applying the Validity processing. All urgent transitions must
be indicated in V Ts to be ready for firing.

V Ts = {t ∈ FTs/Hl (t) = Tf (t)} (7)

The dFTsTcp
presents all concurrent transitions. To solve

this conflict, the dpfm calculates the priority of each tran-
sition using the marking M and the coef matrix. Then,
the dFTsTcp

is filtered to present only the transitions with
the highest priority. This filtering is made with the Step
Selection processing. In fact, this processing is able to select
the Tcp transition having the highest priority according to its
neighborhood (eq. 8).

∀Tcp1 , Tcp2 ∈ Tcp, Tcp1 is a neighbor of Tcp2

⇔ ∃p ∈ P such that BTcp (p, Tcp1) 6= 0∧BTcp (p, Tcp2) 6= 0
(8)

In this step, the proposed dPTPN is able to support a
selection policy. In [13], the authors have proved that dPTPN
can attribute the priorities to transitions sharing the place
processor according to the LLF policy. In [14] the authors
has further proven their extension with the Earliest Deadline
First policy (EDF).
Finally, the dpfm fires all transitions in the updated sets. The
firing is described by the following equation:

∀FT ∈
{
V Ts, FTsTcp

}
, F iring (FT) =⇒

FT = V Ts

⇔M ′ = M +
∑

t∈FT (F (., t)−B (., t))

FT = FTsTcp

⇔M ′ = M +
∑

t∈FT

(
FTcp

(., t)−BTcp
(., t)

) (9)

More details about the dpfm and the firing process can be
found in [13].

3.2 Model construction with dPTPN
In the [13] and [14], the authors have suggested a spec-

ification with dPTPN of the important component of the
RTS : the Real-Time Task. In fact, the internal behavior of
tasks is presented through two major patterns, the first of
which describes the creation, the activation and the deadline
model of the tasks. This pattern is critical at the scheduling
analysis of the RTS. It is modeled for describing a stop-
Marking when it was a temporal fault in the system.
As for the second pattern, it is the modeling of the al-
location and execution of the task on the processor. The
processor is a shared resource between the tasks of the
same partition. The allocation event is modeled through a
Tcp transition and the transition having the highest priority,
under a defined policy (EDF in [13], LLF [14]) allocates the
processor and begins its execution. The execution modeling
is dedicated to discrete time and for each tic of clock
the task is asked for liberation of the processor if a new
coming task has the highest priority. Figure (Fig. 4) presents

Fig. 4: RTS Task internal behavioral with dPTPN

the completed dPTPN model of the internal behavior of
the task T1 (0, 4, 2) ∈ Task. It can be noted that this
model is composed of 16 places, 7 T-Transitions and 3 Tcp-
Transitions and for modeling the system Ω those numbers
are increased. Thus, the complexity of the modeling and its
interpretation become more and more difficult.
We distinguish that for each task of Ω, the model dPTPN is

similar. In fact, just the initialization of the model with the
firing times and the weights of arcs change. The modification
correspond to the chosen task for modeling. We can consider
the dPTPN model as an Object and each task Ti ∈ Task is
an instance of this Object.
In the coming section, we propose the definition of the
Object Task. Next, we define the new model of Ω using
the instances of the proposed Object.

4. Object modeling with dPTPN
Using Petri Nets to specify the behavioral specification of

objects is a major tendency to integrate between objects and
PNs. Indeed, the networks are used to describe the internal
behavior of objects. Besides, the internal state of objects is
indicated by the marks in the network places. Moreover, the
execution of the methods of an object is described with the
transitions.
So, the net structure specifies the availability of a method
according to the internal state of the object, and indicates
the possible sequences of methods execution by the object.
The interest of Petri nets is to describe the intrinsically
competing objects capable of executing several methods at
the same time. Furthermore, certain transitions of the net can
remain "hidden" or protected inside an object, and therefore
model the internal and spontaneous behavior of an object by
contrast to the services it offers to its environment.
The fundamental concern of such approach is to allow the
use of concepts stemming from the objects approach (clas-
sification, encapsulation) to describe the system structure,
instead of using a purely hierarchical structuring.
In the "Petri Nets in objects" paradigm, a system is described
as a set of objects which communicate the behavior of each
object being described in terms of Petri Nets. Mostly, these
approaches are class-based, which allows the association of
a PNs with a class of objects rather than with an individual
object.
Based on this approach, we now present the definition of
the new object "Task" and we specify the communication
between the different instances of this object in order to
model and analyze the schedulability of the system Ω.

4.1 Task Component
The PNs in objects depends on the encapsulation of the

various behaviors of the object in a centenary called PNs
component. We propose a dPTPN constituent called "TaskC"
to encapsulate the behavior of a Real-Time task.
"TaskC" is characterized by two interfaces which assure

the communication with its environment: input and output.
In fact, each interface is a finite set of places. The graphical
definition of TaskC is presented in Fig. 5 and defined with
the triplet:

TaskC = 〈dPTPN, II,OI〉 (10)

with:

Fig. 5: The Task Object with dPTPN

(1) dPTPN: is the dPTPN model presented in Fig. 4;
(2) II = {PUncreated, PReceivedData, PgetProc}: is the

places that composed the Input Interface;
(3) OI = {PReady, PDeadline, PRemainingPeriod, PSendData

, PReleasing}: is the places that composed the Output
Interface;

Let "T1 (0, 4, 2) ∈ Task" from Ω. Its corresponding
"TaskC1" component instance of "TaskC" is created as
follows:
• The firing time of the creation event is initialized with

"0": TfTaskC1
(TCreation) = 0;

• The period is initialized on putting the weight "4" on
the coming arcs of the place "PRemainingPeriod" and
on the outgoing arcs of the place "PElapsedPeriod":
FTaskC1 (PRemainingPeriod, TCreation) = 4;
FTaskC1

(PRemainingPeriod, TRestart) = 4;
BTaskC1

(PElapsedPeriod, TRestart) = 4;
• The execution time is initialized with adding the weight

"2" on the input arcs of the place "PCi" from the
transition TRestart and on the outgoing arc from the
place "Pei" to TendCi:
BTaskC1

(Pei, TendCi) = 2;
FTaskC1

(PCi, TRestart) = 2;

4.2 Modeling of the shared processors between
Tasks

The processor is the resource responsible of the
execution of tasks. In our study, we focus on the partitioned
multiprocessor system. In fact, each task is assigned to
one processor and the scheduling analysis of the system
corresponds to analyzing each processor.
The processor is modeled, with dPTPN , by a place and
its state is described by the present marking. It is free if
a mark exists and occupied otherwise. The allocation of
the processor depends on the used scheduling strategy. In
our study, we are interested in the strategy based on the
Earliest Deadline First (EDF). We consider two tasks (T1
and T2) are in the same partition and share the processor
P1 (Alloc(T1)=Alloc(T2)=P1). Fig. 6 presents the dPTPN
model corresponding to the shared processor P1 between
the instances TaskC1 and TaskC2 of TaskC.
The current state presents a mark in "P1Ready", "P2Ready"
and Proc1 to indicate that T1 and T2 call for the processor
P1. So, the event of allocation is modeled by a transition

Fig. 6: Allocation processor using the EDF policy

"T1Allocation" and "T2Allocation" for T1 and T2,
respectively. The processor will be attributed to the task
component having the transition "TiAllocation" with the
highest priority (having the earliest deadline). Indeed, the
allocation is modeled by a registration of a mark in theinput
place "PigetProc" of the corresponding task component.
In Fig. 6, the earliest deadline value is presented with
the marking of the place "P1RemainingPeriod" and
"P2RemainingPeriod".
The main interest of "coef" matrix is to provide a solution
for presenting the arithmetic operators. Indeed, in [13] it is
used to model the equation L (to calculate the Laxity) with
dPTPN. In the current study, we intercalate the coefficient
"1" on the arc connecting the place "T1RemainingPeriod"
and the "T1Allocation" associated with TaskC1 (as well as
for T2RemainingPeriod" and the "T2Allocation" associated
with TaskC2).
Based on the semantics of dPTPN, the priority
of "T1Allocation" is the multiplication of the
"T1RemainingPeriod" marking and the corresponding
coefficient of coef matrix (coef = 1). In (Fig.6),
"T1Allocation" is the highest priority because it has the
earliest deadline.
After execution, the task T1 releases the processor P1
on firing the transition "T1Releasing" associated to the
TaskC1 component. The crossing allows the liberation
of the processor by putting a token in the place "Proc1"
(Fig.6).

4.3 Modeling of the communication between
the instances of TaskC

The considered application (Robot Footballer) requires the
transmissions of data between the tasks. Indeed, some tasks
are preceded by some others as indicated in Fig. 1. Thus, the
preceded task can be activated only after receiving data from
its corresponding preceding task. Hence, the transmissions

time of data between tasks is negligible thanks to the high-
speed of the used DMA. As a consequence, the input task
sends the information as soon as it finishes all or a part of its
activity without the risk of waiting. Formally, the precedence
relations between all tasks are described in Ω via the Prec
function.
Fig. 7 shows the dPTPN model for the communication

Fig. 7: Communication between T1 and T4

between T1 and T4. The current marking presents a mark
in the output place "P1DataToSent" of the "TaskC1". It in-
dicates that the task T1 has finished an instance of execution
during its period and is ready to send the necessary data for
the activation of T4.
The immediate transition "T1Sending" is enabled and its
firing allows the putting of one mark in the place "T1toT1"
and one in "T1toT4". The main object for using the place
"TitoTi" is to indicate the precedence between the different
instances of execution of the task Ti.
The new marking enables and validates the transition
"T4Receiving". Since its crossing, the task T4 has all
necessary data to activate a new instance.

5. Tool and model execution
The dPTPN is accompanied with a scheduling analysis

tool called dPTPNS [14] (dynamic Priority Time Petri Nets
for Scheduling analysis). Indeed, it presents a Petri Nets
editor and executer model.
The editor is implemented under the Graphical Modeling
Framework (GMF) founded on Eclipse Modeling Frame-
work (EMF). Hence, the dPTPN Meta Model represents
the starting point of the editor’s generation process. The
ordinary Petri Nets Meta Model is extended with the addition
of two Meta class: Temporal and Tcp. The created models
are checked through a set of constraints expressed with
the Object Constraint Language (OCL) [9]. The validation
doubles through the verification during and after constructing
the model.

It is obvious that the created model is built around a drawing

Fig. 8: dPTPN Metamodel

composed of places, transitions and arcs. In fact, we need to
easily extract the existing data from the editor. Fortunately,
the created model can also be serialized to generate an XML
(Extensible Markup Language) or XMI (XML Metadata
Interchange) file. The generated file conforms to the dPTPN
Meta Model and presents the entry port point of the executer.
Due to the structure of the editor output, the properties of
the modeled net are easily interpreted.
The verification framework is sufficiently flexible and ex-
pressive to support module inclusion and extension. The
use of the editor tool makes it easier and faster to create
dPTPN models. Despite the representation of dPTPN ele-
ments provided by the editor, the palette is equipped with
dPTPN components in order to facilitate the illustration of
complex tasks and computing resources. So, it is sufficient
for the developer to select the structured dPTPN class from
the palette with the communication means.
Compared to the existing Time Petri Nets simulators such
as ROMEO [7] and TINA [5], the impetus of our tool
is the integration of the dynamic priority concept and its
structured input/output files and Petri components which
guarantee interaction with the existing PNs simulators and
Eclipse features.
If we are to situate our extension with regard to the existing
tools, in addition to the dynamic priority, we note the
following distinctions:
• Contrary to Cheddar tools [26], Mast [10], Times

[1], which cannot cover all the possible states of the
system, dPTPN starts from an initial state to succeed
in determining the error source if it occurs.

• Pertaining to the other extensions presented in Section
2, dPTPN offers a strategy that accelerates the marking
and avoids the combinatorial explosion in front of a
large number of states. This strategy is based on partial
order theory and simultaneous crossing of a set of

enabled transitions [13].

5.1 Model execution
To show how dPTPNS can be used to specify and analyze

the robot footballer application, we consider the following
table (Tab. 1) to present the specification of the system Ω.
The generation of the different partitions is made through

Table 1: The specification of each partition
Partitions Tasks

Name Ri Pi Ci

P1

T1 0 20 8
T2 0 30 15
T4 0 20 6
T6 0 20 4

P2
T5 0 40 15
T7 0 40 15
T8 0 45 8

P3 T9 0 40 6
T10 40 40 10

P4

T3 0 70 8
T11 40 20 12
T12 70 20 12
T13 70 30 10

a specific partitioning tool such as RTDT [27] and for each
partition the dPTPNS is used for analysis.
For modeling the instances of TaskC, we just indicate
the input and output places for each instance in the editor
dPTPNS. To model the system Ω, we create 13 instances of
TaskC.
The initial marking corresponds to initialize "PiIncreated",
TitoTi" with one mark and "TiCi", "TiRemainingPeriod"
with the corresponding Ci and Pi marks from Tab. 1,
respectively.
The dPTPNS is accompanied with a simulator that imple-
ments the semantics of the dPTPN formalism. After creating
the Ω model with dPTPN editor, the simulation is started.
At instant t= 0ms, T1, T2 and T3 are enabled and T1, T3
have the highest priority on P1 and P4, respectively. After
the execution of T1, at t=8ms, T4 receives all the necessary
data to be activated. At this moment, the deadline of T4 is
earlier than T2, so T4 takes the processor P1.
The dPTPNS simulator indicates at t=30 the activation of a
new instance of T2 when the previous one does not achieve
its execution on the P1 processor. As a consequence, the
simulator shows the crossing of the "T4deadline" transition
and puts a mark in the output place "P4Deadline" of the
TaskC4. As presented in a the model construction with
dPTPN section, the marking of "P4Deadline" is a stop-
Marking. Thus, the simulation is stopped and the dPTPNS
indicates that T1, T2, T4 and T6 are non-schedulable on
the processor P1. This description presents not only the
scheduling analysis results, but also a useful feedback to the
portioning tools to eliminate this task combination during
the next generation.

6. Conclusion
The development of dynamic Priority Time Petri Nets

(dPTPN) [13] models for the scheduling analysis of a multi-
processor system has given very important results [13], [14].
In fact, it presents, on the one hand, a detailed specification
of Real-Time System behavior. On the other hand, it is
able to indicate the exact description of the non-schedulable
sequence and request it as a feedback to the partitioning tool
to obtain new partitions.
However, as the increasing complexity of the RTS gives birth
to a very complex dPTPN model, in this paper, we present a
new modeling technique. Based on the object modeling, we
present a new component TaskC. Using different instances
of it we obtain the new scheduling model. Hence, the
scheduling policy considered in this paper is the Earliest
Deadline First (EDF) [19] dealing with dependent tasks.
In future work, we are interested in the properties verification
such as liveliness and safety to particularly present the
behavior of an RTS. Furthermore, we intend to integrate
the dPTPN formalism into a HW/SW partitioning approach
based on a Model Driven Engineering (MDE) [25]. In fact,
we aim at showing how the dPTPN can be able to prove an
RTS and how it can be useful to reduce the space solutions
of the partitioning activity.

References
[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and Yi. Wang.

Times - a tool for modelling and implementation of embedded sys-
tems. In TACAS ’02: Proceedings of the 8th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 460–464, London, UK, 2002. Springer-Verlag.

[2] V. Antti. Stubborn sets for reduced state space generation. In
Applications and Theory of Petri Nets, pages 491–515, 1989.

[3] B. Berthomieu and M. Diaz. Modeling and verification of time
dependent systems using time petri nets. IEEE Trans. Softw. Eng.,
17(3):259–273, 1991.

[4] B. Berthomieu, F. Peres, and F. Vernadat. Bridging the gap between
timed automata and bounded time petri nets. In FORMATS, pages
82–97, 2006.

[5] B. Berthomieu and F. Vernadat. Time petri nets analysis with tina. In
QEST, pages 123–124, 2006.

[6] U. Buy and R.H. Sloan. Analysis of real-time programs with simple
time petri nets. In ISSTA ’94: Proceedings of the 1994 ACM SIGSOFT
international symposium on Software testing and analysis, pages 228–
239, New York, NY, USA, 1994. ACM.

[7] G. Gardey, D. Lime, M. Magnin, and O. H. Roux. Romeo: A tool
for analyzing time petri nets. In CAV, pages 418–423, 2005.

[8] Joel Goossens, Pascal Richard, P. Richard, and Université Libre De
Bruxelles. Overview of real-time scheduling problems. In Euro
Workshop on Project Management and Scheduling, 2004.

[9] Object Management Group. UML 2.0 OCL Specification. OMG
Adopted Specification ptc/03-10-14. Object Management Group,
October 2003.

[10] M. Gonzalez Harbour, J. J. Gutierrez Garciia, J. C. Palencia Gutierrez,
and J. M. Drake Moyano. Mast: Modeling and analysis suite for
real time applications. Real-Time Systems, Euromicro Conference on,
0:0125, 2001.

[11] J.Carpenter, S.Funk, P.Holman, A.Srinivasan, J.Anderson, and
S.Baruah. A categorization of real-time multiprocessor scheduling
problems and algorithms. In Handbook on Scheduling Algorithms,
Methods, and Models. Chapman Hall/CRC, Boca, 2004.

[12] Y. Hadj Kacem, W. Karamti, A. Mahfoudhi, and M. Abid. A petri net
extension for schedulability analysis of real time embedded systems.
In PDPTA, pages 304–314, 2010.

[13] W. Karamti, A. Mahfoudhi Y. Hadj Kacem, and M. Abid. A formal
method for scheduling analysis of a partitioned multiprocessor system:
dynamic priority time petri nets. In PECCS, pages 317–326, 2012.

[14] W. Karamti, A. Mahfoudhi, and Y. Hadj Kacem. Using dynamic
priority time petri nets for scheduling analysis via earliest deadline
first policy. In ISPA, page to appear, 2012.

[15] V. Kimmo. On combining the stubborn set method with the sleep
set method. In Robert Valette, editor, Application and Theory of Petri
Nets 1994: 15th International Conference, Zaragoza, Spain, June 20–
24, 1994, Proceedings, volume 815 of Lecture Notes in Computer
Science, pages 548–567. Springer-Verlag, Berlin, Germany, 1994. l’
Springer-Verlag Berlin Heidelberg 1994.

[16] S. H. Kwang and J.Y.-T. Leung. On-line scheduling of real-time tasks.
In IEEE Real-Time Systems Symposium, pages 244–250, 1988.

[17] D. Lime and O. H. Roux. Formal verification of real-time systems
with preemptive scheduling. Real-Time Syst., 41(2):118–151, 2009.

[18] D. Lime and O.H. Roux. A translation based method for the
timed analysis of scheduling extended time petri nets. In RTSS
’04: Proceedings of the 25th IEEE International Real-Time Systems
Symposium, pages 187–196, Washington, DC, USA, 2004. IEEE
Computer Society.

[19] C. L. Liu and James W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. J. ACM, 20:46–61,
January 1973.

[20] L.Sha, T. Abdelzaher, K.E. arzén, A. Cervin, T. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. Lehoczky, and K.A. Mok. Real time
scheduling theory: A historical perspective. Real-Time Systems,
28:101–155, 2004. 10.1023/B:TIME.0000045315.61234.1e.

[21] A. Mahfoudhi, Y. Hadj Kacem, W. Karamti, and M. Abid. Compo-
sitional specification of real time embedded systems by priority time
petri nets. The Journal of Supercomputing, pages 1–26, 2011. doi
10.1007/s11227-011-0557-9.

[22] H.Kitano M.Veloso, E.Pagello. Robocup-99: Robot soccer world cup
iii. In Velsoso (Eds.).

[23] C. A. Petri. Fundamentals of a theory of asynchronous information
flow. In IFIP Congress, pages 386–390, 1962.

[24] O. H. Roux and A. M. Déplanche. A t-time Petri net extension for
real time-task scheduling modeling. European Journal of Automation
(JESA), 36(7):973–987, 2002.

[25] Douglas C. Schmidt. Model-driven engineering. IEEE Computer,
39(2), February 2006.

[26] F. Singhoff, J. Legrand, L. T. Nana, and L. Marcé. Cheddar : a flexible
real time scheduling framework. ACM Ada Letters journal, 24(4):1-8,
ACM Press, ISSN :1094-3641, November 2004.

[27] H. Tmar, J. P. Diguet, A. Azzedine, M. Abid, and J. L. Philippe.
Rtdt: A static qos manager, rt scheduling, hw/sw partitioning cad tool.
Microelectronics Journal, 37(11):1208–1219, 2006.

