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Abstract—Real-Time Systems are subject to Soft/Hard tem-
poral constraints. Besides, a tasks scheduling step is required to
meet the maximum of deadlines, for which there are different
scheduling algorithms to do. However, nowadays real-time
systems represent a serious issue for the worldwide industry
due to their growing complexity. Indeed, since they are more
susceptible to failures and deficiencies of development, it is
crucial to rely on high level development methods. In this
context, some researchers have proposed scheduling analysis
within the new profile Modeling and Analysis of Real-Time
and Embedded systems (MARTE), which supports both mono-
processor and multiprocessor scheduling algorithms. While
supported multiprocessor scheduling algorithms are part of
the partitioned approach, global approach algorithms have not
been backed by MARTE yet. In the present paper, we seek to
improve the meta-models of MARTE stereotypes to establish
scheduling analysis for the global approach.
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I. INTRODUCTION

Real-time systems are facing a set of development difficul-
ties, among which the tasks scheduling can be stated. Thus,
developers are encountering the challenge of computing
resource recovery, preemption time, the possibility of task’s
migration, etc. This problem should be solved by schedu-
lability theory [2][5]. Nonetheless, a real-time system has
to meet the temporal determinism; i.e., it has to respect the
time constraints to which it is exposed. What is worthwhile
to note is that a schedulability analysis is necessary to
verify the behavior of the studied system. Furthermore, user
requirements evolve by the time. Since complex real-time
applications impose a set of principal constraints, the use
of simple monoprocessor architecture does not always meet
their needs and the constraints that are required by designers.
Additionally, since it would be more useful to rely on
parallel/multiprocessor architecture, the complexity of such
systems increases. This necessitates high level development
techniques to overcome this challenge. In the same vein, the
Model Driven Engineering (MDE) [18] is a way to beat the
shortcomings of complex electronic systems development.
In particular, Unified Modeling Language (UML) profiles
promotes an adequate solution to support the whole life
cycle co-design of complex systems with their real time con-
straints and performance issues. In this context, the present
paper focuses on the use of MARTE profile [7] within the

schedulability analysis context [19]. Two major scheduling
approaches are available in the literature: The partitioned and
the global approaches. MARTE supports only algorithms for
the partitioned approach; it does not allow task’s migration.
Thus, we propose in this paper the main changes to be
made on MARTE profile for supporting global scheduling
approach. These amendments affect mainly the stereotypes
of MARTE/SAM (Scheduling Analysis Modeling) since it is
the sub-profile intended to model the schedulability analysis.
Our contribution is used to change the meta-models of
existing stereotypes such as gaAcqStep, gaRelStep, saStep,
gaStep and gaScenario. We try to modify in the structure of
the corresponding existing attributes, with no need to add
new ones, by referring to their multiplicities which makes
easy the adoption of the proposed extension in revisions of
MARTE.
This paper is structured as follows. Section 2 emphasizes
the various related works. Section 3 defines the recent
MDE paradigm and its MARTE profile. Section 4 highlights
the importance of using scheduling analysis theory in the
context of MARTE annotations. Section 5 specifies the main
contribution of this paper. It sets up the various changes
attributed to MARTE/SAM meta models. To further explain
our contribution, in section 6, we rely on a pedagogic case
study. Finally, conclusions and future works are illustrated
in section 7.

II. RELATED WORKS

Some works are available in the literature reporting the
use of MARTE within the schedulability analysis context.
For example, in [21], the authors highlighted the importance
of using the UML/MARTE profile compared to Schedulabil-
ity, Performance and Time (SPT) [6]. They focused on the
exploitation of MARTE within the context of schedulability
analysis. ACCORD/UML [4][20] methodology founded on
this profile enabling the schedulability analysis and origi-
nally based on the SPT profile is illustrated. Moreover, in
[15], the researchers benefited from the use of UML within
the schedulability analysis. They attempted to clarify the
concepts needed to build an UML model annotated with
MARTE stereotypes. The constructed model should cover
all the data required to be submitted to the chosen analysis
tool. In this work, the authors have chosen the MAST tool.
Indeed, other studies have transformed MARTE models to



scheduling analysis tool models. In [9], the authors have
benefited from the profile MARTE/SAM to model schedu-
lability analysis of RTES (Real Time Embedded Systems).
By the way, they suggested an automatic mapping from
UML activity diagram to PTPN [11] for establishing a
formal verification. Although the proposed methodology is
intended for multiprocessor systems, it is based on the
scheduling partitioned approach (using the RM algorithm)
that does not allow task’s migration. In [10], the authors
presented a view based on UML profile for schedulability
analysis and used an automatic conversion to SymTA/S
scheduling analysis tool. Besides, they have proposed an
extension for the papyrus palette. In that way, not to be
expected to know the details of MARTE profile, developers
can quickly create scheduling analysis views. Moreover,
in [8], although the authors have addressed the problem
of modeling and scheduling analysis of real-time systems,
they didn’t take advantage from MARTE. In this context,
they have reused in [16] the same flow with the integration
of MARTE profile to deal with the same problems. In
fact, this article uses a model-driven approach to design
Ada applications. It sets a tool that transforms the initial
models to schedulability analysis models. The authors took
advantage from MARTE stereotypes to annotate models. The
schedulability analysis tool used in this paper is MAST. A
different orientation was reported in [1]; the researchers have
adapted two modeling languages MARTE and EAST-ADL2
in order to design and analyze automotive systems at an
early design stage. They employed the MAST tool to decide
about the schedulability of the studied system. Furthermore,
other researchers have taken advantages from the use of
MARTE in the framework of schedulability analysis, but
they did not address all the scheduling algorithms types,
such as in [3] (the scheduling algorithm used was RMA).
This article explains well the different steps needed to reach
the schedulability results. Nevertheless, the proposal of this
work does not support monoprocessor systems with periodic
or sporadic tasks. It rather supports either distributed or
multiprocessor systems. In addition, in [17] the authors have
also benefited from the MARTE profile in the context of a
high level systems development. Their article was structured
around two main contributions; Firstly, the use of MARTE
for modeling systems that contain both functional and non
functional properties, and secondly, the exploitation of used
models to extract and implement temporal information in
order to provide scheduling analysis. Actually, the authors
have melted four basic models, one of which is to present
functional and non-functional concepts that represent an
alternative model based on time profile containing clocks
properties. With respect to the two other models, they are
to represent the various resources and the allocation of
functional part. The authors have benefited in particular
from the model incorporating the clock’s characteristics
to check tasks schedulability. Nevertheless, the scheduling

algorithm used was DM fixed priority. Though this algorithm
can be applied either on monoprocessor or multiprocessor
architecture, when applied on multiprocessor architecture, it
belongs to the partitioned scheduling approach and does not
support task’s migration.
All the mentioned works have suggested high level ap-
proaches to fight against the increasing complexity of real
time applications. They benefited from MARTE profile to
fulfill the schedulability analysis at a high level of abstrac-
tion, which allows the detection of mistakes early. Although
these research studies have focused either on monoprocessor
or multiprocessor systems, they have not yet dealt with the
scheduling algorithms that support task’s migration. It is in
this context that we propose an improvement to MARTE
meta-models, and especially modifications in the structure
of SAM meta-models.

III. THE MODEL DRIVEN ENGINEERING

The MDE is a specific software engineering approach
aiming at the definition of the theoretical framework to
generate code using successive model’s transformations. It
allows the overcoming of the growing complexity of elec-
tronic systems. Furthermore, it has several benefits, among
which we can cite the flow’s automation, the capture and
the validation of constraints (using OCL (Object Constraint
Language)), the independence overlook of the technol-
ogy developments, better management of complexity, better
reuse of models, etc. In the context of the schedulability
analysis, MDE is mainly used in the modeling step and the
transformation of scheduling analysis models to the models
of the chosen scheduling analysis tool. Typically, the MDE
uses the UML profile and especially MARTE.

A. MARTE

MARTE which is a contribution to the MDE is a spec-
ification of UML adopted by OMG (Object Management
Group) aiming to replace the UML SPT profile. It does
not only bear the model-driven development and real time
systems analysis, but also provides a unified co-design of
Software/Hardware parts at a high level of abstraction. This
profile which is meant to support the real time embedded
systems schedulability analysis offers standard annotations.
The aim of theses stereotypes is to bring the model sys-
tem studied from the schedulability analysis tool model,
which promotes independence between the different stages
of real time systems development and those of schedulability
analysis. Then, any schedulability analysis tool could be
exploited. MARTE includes a set of sub-profiles such as
GRM (Global Resource Modeling) (SRM (Software Re-
source Modeling), HRM (Hardware Resource Modeling)),
GQAM (Generic Quantitative Analysis Modeling) (SAM,
PAM (Performance Analysis Modeling)), etc, each of which
has its own features.



B. SAM

To avoid errors in the design of complex systems and
especially those related to temporal behavior, it is essential
to rely on models for schedulability analysis. In this context,
MARTE/SAM offers a variety of stereotypes for annotating
models with real-time features. This profile has the capacity
to predict if all tasks meet their time constraints. Subse-
quently, it promotes the validation of the system temporal
accuracy.

IV. SCHEDULING ANALYSIS THEORY AND MARTE
PROFILE

Given that a set of tasks must be performed on all
available computing resources, it is not possible to execute
tasks without specifying the run sequence. Moreover, the
assignment of tasks on processors must be optimal so that
the maximum of deadlines must be satisfied. This problem
is solved within the scheduling theory that is built on a set of
various algorithms. Scheduling algorithms can be classified
as part of monoprocessor or multiprocessor scheduling. Em-
ploying the MARTE/SAM profile through a schedulability
analysis, it should be noted that several algorithms are sup-
ported by this profile. The choice of the scheduling algorithm
to be used is done through the attribute «schedPolicy»,
which is an attribute of «scheduler» stereotype belonging
to the MARTE/GRM sub-profile and means the scheduler.
Then, the available algorithms are «EarliestDeadlineFirst»,
«FIFO», «FixedPriority» (DM and RM), «LeastLaxityFirst»,
«RoundRobin» and «TimeTableDriven».

A. Monoprocessor scheduling and MARTE

Monoprocessor scheduling algorithms concern systems
with architecture composed of a single computing resource.
They differ in the viewpoint supported types of tasks (pe-
riodic or not), types of priorities (static or dynamic), etc.
Among the existing monoprocessor scheduling algorithms,
MARTE supports for example RM [14] and DM [12]. These
two algorithms are also ameliorated to be employed in the
context of multiprocessor systems as well, but, used only
in the context of partitioned approach. The corresponding
annotation is «FixedPriority».

B. Multiprocessor scheduling and MARTE

The multiprocessor scheduling problem has been treated
for the first time by Liu [13]. It is a theory for systems with
multiprocessor architecture. Indeed, there are three families
of multiprocessor scheduling algorithms [5]: the scheduling
by partitioning, half partitioned and the global approaches.
Obviously, MARTE supports multiprocessor scheduling al-
gorithms like «EarliestDeadlineFirst» and «LeastLaxity-
First». But, these algorithms belong to the partitioned
scheduling approach. In that case, multiprocessor scheduling
problem should be resolved as a mono processor one. It
should be borne in mind that there is no task’s migration.

Indeed, MARTE does not supply stereotypes to support
scheduling algorithms of the global approach. Thereby, in
the next sections we propose the solution to solve this
limitation.

V. OUR CONTRIBUTION

In this section, we specify the different changes made on
the various stereotypes used within the schedulability anal-
ysis. These amendments relate especially to their attributes.
Of course, this will be shown in the structure of stereotypes
meta-models.
We have previously mentioned that the attribute «sched-
Policy» of the stereotype «scheduler» allows the choice of
the selected scheduling algorithm’s name. If the scheduling
algorithm is unknown, it is imperative to select the option
«Undef». However, if the scheduling algorithm is not sup-
ported by MARTE, it is crucial to choose the option «Other».
It is to be noted that is possible to specify the name of the
scheduling algorithm that we wish to use. In the attribute
«otherSchedPolicy» (an attribute of the stereotype «sched-
uler»), we state the name of the desired algorithm. Yet, doing
that is not sufficient to support scheduling algorithms for
the global approach. It is necessary to study the MARTE
stereotypes to overcome the lack of supported scheduling
algorithms. We seek to further support global multiprocessor
scheduling algorithms like PFair and others. Thus, as noted
we tend to alter the structure of some attributes.
The scheduling analysis modeling is performed through
the MARTE/SAM profile. In this context, the stereotypes
«gaWorkloadEvent», «gaAcqStep», «gaRelStep», «saStep»
and «saCommStep» are the most used. The amendments we
are trying to bring concern only the attributes of stereotypes
«gaAcqStep», «gaRelStep» and «saStep», and more partic-
ularly the multiplicities of the corresponding attributes. In
the following subsections, we specify the changes made to
the attributes of each stereotype.

A. Changes affected to meta-models of specialization stereo-
types

A specialization inherits all the attributes of its general-
ization. So in order to change their structures, it is essential
to modify the generalization meta-model. It is worthwhile to
note that in the following sub-sections, we intend to identify
all the necessary changes that affect the specializations meta-
models. However, the corresponding meta-models do not
show the modifications affected to inherited attributes.

1) Amendments in the meta-model of the stereotype
«gaAcqStep» : The concept of task’s migration requires
that the schedulable resource can be executed on different
computing resources for the same period. Subsequently,
in order to support this notion, we need to specify the
names of various shared resources that a task can block.
It is to be noted that the processors corresponding to the
locked resources must be specified. There are the computing



resources on which the task can run for a new period or
after a migration. Then, the attributes «acqRes» and «Host»
must have a multiplicity of [0..*] (i.e. «acqRes» means
the name of the shared resource and «host» specifies the
name of the computing resource). Otherwise, in the case
of multiprocessor systems with dynamic priority, a task can
change its priority, thus, the attribute «priority» must have a
multiplicity of [0..*]. Moreover, since a task can be divided
into a number of instances, the multiplicity of the attribute
«concurRes» which indicates the name of the currently job
(task’s instance) must be [0..*] (Figure 1 and Figure 2).« stereotype »MARTE::GQAM::GaAcqStepacqRes: Resource [0..1]resUnits: NFP_Integer [0..1]
Figure 1. The old meta-model of
«gaAcqStep»

« stereotype »MARTE::GQAM::GaAcqStepacqRes: Resource [0..*]resUnits: NFP_Integer [0..1]
Figure 2. The proposed meta-
model of «gaAcqStep»

2) Changes in the attributes of the stereotype «gaRelStep»
: Once a task’s execution is finished or interrupted, it does
not only release the previously-blocked shared resource, but
also frees the corresponding processor. Since we treat the
case of multiprocessor scheduling with task’s migration, a
task can allocate different resources and various computing
resources (It blocks a different resource after each migration
or for each new period). Subsequently, it can just release
these different resources when interrupted or terminated. So,
the multiplicity of «relRes» and «Host» must be [0..*]. The
release of the shared resources is dependent on the end of
task’s execution, the interruption from a higher priority task
or as a self interruption. The reason of the mutual exclusion
resource’s release is denoted by the attribute «cause». Since
the task can unlock the shared resources under different con-
ditions and many times for the same period, the multiplicity
of the attribute «cause» must be [0..*]. Moreover, as in the
case of the stereotype «gaAcqStep», the attribute «priority»
must have a multiplicity [0..*]. Regarding the stereotype
«gaAcqStep», its attribute «concurRes» must have a mul-
tiplicity of [0..*] (Figure 3 and Figure 4).« stereotype »MARTE::GQAM::GaRelSteprelRes: Resource [0..1]resUnits: NFP_Integer [0..1]
Figure 3. the initial meta-model
of «gaRelStep»

« stereotype »MARTE::GQAM::GaRelSteprelRes: Resource [0..*]resUnits: NFP_Integer [0..1]
Figure 4. new meta-model of
«gaRelStep» after changes

3) Changes in the attributes of the stereotype «saStep» :
«saStep» is a stereotype that defines an action and can be
used to set the action of performing a task. In the case of
a multiprocessor scheduling within task’s migration, a task
can be interrupted several times during one period. Subse-
quently, the attribute «preemptT» must have a multiplicity
[0..*] (i.e. «preemptT» represents the period of time during
which the task is interrupted). Similarly for the attribute
«readyT» which refers to the time at which a task can
start its execution. This attribute must have a multiplicity
of [0..*], and of course, since we deal with the scheduling
with task’s migration, a task can be executed on different
computing resources. Therefore, identically to the case of
the stereotypes «gaAcqStep» and «gaRelStep», the attribute
«Host» must have a multiplicity [0..*]. In addition, as noted
before, the complexity of the attribute «concurRes» must be
[0..*]. Moreover, the context of switching causes the change
of some attributes such as «deadline», «priority», etc. Then
the attribute «deadline» should have a multiplicity of [0..*]
(Figure 5 and Figure 6).

deadline: NFP_Duration [0..1]
spareCap: NFP_Duration [0..1]
schSlack: NFP_Real [0..1]

preemptT: NFP_Duration [0..1]
readyT: NFP_Duration [0..1]

nonpreemptionBlocking: NFP_Duration [0..1]
selfSuspensionBlocking: NFP_Duration  [0..1]
numberSelfSuspensions: NFP_Integer  [0..1]  

« stereotype »
SaStep

Figure 5. the old attributes struc-
ture of the stereotype «saStep»

deadline: NFP_Duration [0..*]{ordered}
spareCap: NFP_Duration [0..1]
schSlack: NFP_Real [0..1]

preemptT: NFP_Duration [0..*]{ordered}
readyT: NFP_Duration [0..*]{ordered}

nonpreemptionBlocking: NFP_Duration [0..1]
selfSuspensionBlocking: NFP_Duration  [0..1]
numberSelfSuspensions: NFP_Integer  [0..1]  

« stereotype »
SaStep

Figure 6. the new meta-model
structure of the annotation «saStep»

B. Changes affected to meta-models of generalization
stereotypes

In the following subsections, we illustrate the amendments
affected to the attributes of generalization meta-models.

1) Modifications in the attributes of the stereotype
«gaStep» : We have noticed that some attributes such as
«Host», «priority», «concurRes» and «Cause» are common
among several stereotypes such as «gaAcqStep», «gaRel-
Step» and «saStep». To change the structure of these
attributes, we do not need to modify the corresponding
meta-models, but rather the meta-model of the generalized
stereotype. Since «gaAcqStep», «gaRelStep» and «saStep»
are specializations of «gaStep», they inherit all its attributes.
Eventually, it is just necessary to change the attributes of
«gaStep», so that these changes take effect in the meta-model
of each specialization (Figure 7 and Figure 8).

2) Changes in the attributes of the stereotype «gaS-
cenario» : As noted above, the attribute «cause» must
have a multiplicity of [0..*]. This attribute is common
to several stereotypes such as «gaAcqStep», «gaRelStep»
and «saStep». Thus, instead of changing its structure in



isAtomic: NFP_Boolean [0..1]
blockT: NFP_Duration [*]

rep: NFP_Real [*]
prob: NFP_Real [*]

priority: NFP_Integer [0..1]
concurRes: SchedulableResource [0..1]

Host: GaExecHost  [0..1]
servDemand: GaRequestedService [*] {ordered} 

servCount: NFP_Real[*] {ordered}

« stereotype »
MARTE::GQAM::GaStep

Figure 7. The old meta-model of
«gaStep» stereotype

isAtomic: NFP_Boolean [0..1]
blockT: NFP_Duration [*]

rep: NFP_Real [*]
prob: NFP_Real [*]

priority: NFP_Integer [0..*]{ordered}
concurRes: SchedulableResource  [0..*]{ordered}

Host: GaExecHost [0..*]{ordered}
servDemand: GaRequestedService [*] {ordered} 

servCount: NFP_Real[*] {ordered}

« stereotype »
MARTE::GQAM::GaStep

Figure 8. The new meta-model of
«gaStep» with the proposed modifi-
cations

the mentioned stereotypes; it is sufficient to modify in
the meta-model of the stereotype «gaScenario». Indeed,
«gaScenario» represents a generalization of «gaStep» which
is a generalization of «gaAcqStep», «gaRelStep», «saStep»
stereotypes. So, any changes in the structure of the attributes
of «gaScenario» imply changes in the attributes of «gaStep»
and those of its various specializations (Figure 9 and Figure
10).

cause: GaWorkloadEvent [0..1]
hostDemand: NFP_Duration [*]
hostDemandOps: NFP_Real [*]
interOccT: NFP_Duration[*]
throughput: NFP_Frequency[*]

respT: NFP_Duration [*]
utilization: NFP_Real [*]

utilizationOnHost: NFP_Real [*]
root: GaStep [0..1] 

« stereotype »
MARTE::GQAM::GaScenario

Figure 9. the basic structure of
«GaScenario»

cause: GaWorkloadEvent [0..*]
hostDemand: NFP_Duration [*]
hostDemandOps: NFP_Real [*]
interOccT: NFP_Duration[*]
throughput: NFP_Frequency[*]

respT: NFP_Duration [*]
utilization: NFP_Real [*]

utilizationOnHost: NFP_Real [*]
root: GaStep [0..1] 

« stereotype »
MARTE::GQAM::GaScenario

Figure 10. «GaScenario» meta-
model with changes made

VI. PEDAGOGIC CASE STUDY

To better explain our contribution, we rely on a pedagog-
ical example. We consider a simple system with an applica-
tion made by three periodic tasks and a target architecture
holding two heterogeneous computing resources. For the
tasks scheduling stage, we make use of PFair which is an
on-line multiprocessor scheduling algorithm, with dynamic
priority, and a part of the global approach. It enables tasks
and instance’s migration. We apply it in the context of
periodic and interrupted tasks such as the deadline is equal to
the period. Actually, in the present example, we will not deal
with instance’s migration, but we will rather focus only on
task’s migration to facilitate understanding our contribution.
The schedulability modeling based on MARTE does not
use only the sub-profile SAM but also some attributes of
the GRM package to annotate a class diagram in order to
clarify the different concurrent software resources and those
of the target architecture. Figure 11 specifies a class diagram
annotated by MARTE/GRM stereotypes. The figure 12 illus-
trates in a better way the content of a TASK class and the

value of important attributes of «swSchedulableResource».
It is a zooming for the TASK class illustrated in Figure
11. The use of SAM stereotypes within the schedulability
analysis context is validated on an activity diagram. First, we
start by specifying the GRM attributes required to support
a multiprocessor scheduling as part of a global approach.
Then, we validate our contribution while handling an activity
diagram annotated by SAM.

A. GRM view and multiprocessor schedulability analysis
with task’s migration

The stereotype «swSchedulableResource» annotates
a software concurrent resource. Among the attributes
used in the schedulability analysis, we find the attribute
«isStaticSchedulingFeature». This is a Boolean attribute
used to specify whether the scheduling parameters are static
or dynamic. In our case, we have chosen to use a scheduling
algorithm with dynamic scheduling parameters. So, it is
mandatory to put the value of «isStaticSchedulingFeature»
on false. Furthermore, to specify whether the scheduler
allows preemption of tasks, it is required to set true or
false in the Boolean attribute «isPreemptible». This is an
attribute of «scheduler» stereotype.
As noted below, the GRM annotations are applied on the
class diagram exposed by Figure 11. Indeed, this view
includes a set of operations such as the task’s activation,
its preemption, etc. Given the dynamic aspect of the
chosen scheduling algorithm, a task’s priority changes
according to a set of criteria. Afterward, we choose to
add a function of the type integer in our class diagram.
This function computes the priorities of tasks. It is the
function «computingPrio ()». It will be denoted by the
stereotype «gaRequestedService» and «swAccessService».
Through the attribute «swAccessService», we specify that
the priority is dynamic. Therefore, we attribute the true
value to «isModifier». «accessedElement» must be equal to
the property which defines the priority in the class TASK.
This is the property «priority». We also need to specify
through the attribute «owner» the name of the resource
which owns the priority. These are the various tasks. We
will later see that the annotation by «gaRequestedService»
is necessary to call the function «computingPrio ()» in
the activity diagram. Moreover, since we use a scheduling
algorithm which is not supported by MARTE, we need to
attribute the value «other» to the «schedPolicy» attribute,
and then, in the attribute «otherSchedpolicy», we put the
used scheduling algorithm name. For example, in our
case «otherSchedPolicy» = PFair. It should be noted that
«schedPolicy» and «otherSchedPolicy» are attributes of the
«scheduler» stereotype.



application tension_proc = 0.85V
« hwDMA »dma : DMA « hwRAM »Sdram : SDRAMCapacity = 5200 mAhTension_battery = 14.8 V

period = (20,ms)priority = 20deadline = (20,ms) « swSchedulableResource »T2 : TASK
period = (20,ms)priority = 17deadline = (20,ms)

tension_proc = 1.1V« hwProcessor, hwComponent, scheduler »PROC2 : PROCESSOR« hwCache »I2 : UL2
« swMutualExclusionResource »res1 : RESOURCEValue = true « swMutualExclusionResource »res2 : RESOURCEValue = true

« hwProcessor, hwComponent, scheduler »PROC1 : PROCESSOR« allocated, resourceUsage »
« swSchedulableResource »T3 : TASK « hwBus »bus : BUS« allocated, resourceUsage » « hwSupport »Battery : BATTERY

architecture « hwCache »I1 : UL2

APPLICATION « mutualExclusionResource »value: NFP_Boolean [1]« swMutualExclusionResource »RESOURCE+ rESOURCE [*] ARCHITECTUREtension_proc: NFP_String[1]« hwCache »UL2tension-asic: NFP_String[1] « hwDMA »DMA Capacity: NFP_String [1]Tension_battery: NFP_String [1]« swSchedulableResource »TASK [1]+ bUS « hwSupport »BATTERY« hwProcessor, hwComponent, scheduler »PROCESSOR [1]+ bUS[1] + bUS+ bUS + bUS[1] [1]period: NFP_Duration [1]priority: NFP_Integer [1]deadline: NFP_Duration [1] [*]
[*]+ aSIC+ pROCESSOR« allocated » « hwASIC, hwComponenet, scheduler »ASIC

« hwBus »BUS « hwRAM »SDRAMimport import « allocated, resourceUsage » « scheduler »IsPreemptible=trueschedPolicy=otherotherSchedPolicy=Pfairperiod = (20,ms)priority = 15deadline = (20,ms)
« swSchedulableResource »T1 : TASK

Figure 11. GRM view of the studied system

« gaWorkloadEvent » « gaRequestedService » createTask()« gaWorkloadEvent » « gaRequestedService » activateTask()« gaWorkloadEvent » interruptTask()« gaRequestedService » dormantTask()« gaWorkloadEvent » resumeTask()« gaRequestedService » executionTask()« gaWorkloadEvent » terminateTask()« gaRequestedService » deleteTask()« gaRequestedService » acquireResource()« gaRequestedService » releaseResource()« gaRequestedService » « swAccessService » computingPrio(): Integer

« swSchedulableResource »TASKperiod: NFP_Duration [1]priority: NFP_Integer [1]deadline: NFP_Duration [1] « swSchedulableResource »isStaticSchedulingFeature=true
« swAccessService »accessedElement=priorityisModifier=trueOwner=TASK

Figure 12. GRM view of a Task



B. SAM view and multiprocessor schedulability analysis
with task’s migration

In this subsection, we set up the activity diagram (Figure
14) corresponding to our contribution and to the example of
the studied system’s scheduling. We first specify through the
Figure 13 the sequence of tasks scheduling on the available
resources for two periods. As noted below, in this example,
we deal only with task’s migration without handling with
instance’s migration. This explains the fact that the processor
is free for a few moments.

P1

(0,ms) (17,ms) (20,ms) (23,ms) (33,ms) (43,ms) (53,ms)
P2

(1,ms) (16,ms) (21,ms) (24,ms) (40,ms) (52,ms)Processor occupied by T1Processor occupied by T2Processor occupied by T3Free processor
Figure 13. execution order of tasks on available processors

The task’s priority is dynamic. Indeed, the aim of this
paper is not to deal with the change of priority. But to
explain the strategy envisaged, we assume that every non-
satisfaction of the demand for locking a shared resource
the task’s priority increases. Moreover, at every moment of
shared resource liberation, the task’s priority increases when
the concurrent resource is interrupted. It retains the same
value if the task has finished executing. We try to explain
the activity of Task T1 presented in the activity diagram
(Figure 12). The task is periodic with a period=20ms and
an initial priority («priority» = [17]). To begin, the task
must allocate a shared resource that is designed through
the action LockResource annotated by «gaAcqStep». The
locked resource is res1 and the corresponding processor is
proc1, which is specified by «acqRes» and «host» attributes
(acqRes= [res1] and host= [proc1]), respectively. The first
request of blocking resource is caused by the T1 activation at
t=0ms. Once the processor is allocated, T1 will be executed.
Its running time is 17ms. For this period of time, the task
will never be interrupted, which is specified via the attribute
«preemptT» which is equal 0 ms. Thus, the release of the
shared resource, provided by the action UnlockResource
annotated «gaRelStep», is due to the termination of the task’s
execution. This condition is specified through the attribute
«cause» by calling the operation terminateTask () (cause=
[terminateTask]).
As mentioned above, the release of a shared resource in-
volves changing the priority if the task is interrupted and
if the priority is not conserved. Then, the UnlockResource
action calls the computingPrio() via the «servDemand»
attribute. (i.e. the computingPrio() operation is called for
each locking and unlocking of a shared resource). The result
of this function is stored in the attribute «priority». Since

T1 was not interrupted, after releasing the shared resource,
it retains the same priority. Then, the attribute «priority»
of the «gaRelStep» stereotype is set to 17 (priority= [17]).
Note that the attribute «concurRes» indicates the name of
the currently-running task’s instance.
For a new period, T1 locks a shared resource. This time, the
blockage is caused by «resumeTask». This is an operation
that involves the reactivation of the task. The locked shared
resource is res1. At this level, acqRes= [res1, res1] (the
first res1 was locked during the first period and the second
one is currently locked). The blocking request is satisfied.
Therefore, the task remains the same priority 17. Then, the
attribute «priority» of «gaAcqStep» is set to priority= [17,
17]. The corresponding processor of res1 is proc1, so host=
[proc1, proc1]. The processor proc1 is already allocated, the
task proceeds to be executed. It begins at t=20ms, which is
annotated through the attribute «readyT» which takes the
value 20ms (readyT= [0ms, 20ms]). T1 runs for 3ms before
being interrupted. At this level, execTime= [17ms, 3ms]. T1
is interrupted by a higher priority task T3. It should be noted
at this level that it releases the shared resource res1 that is
specified through the action UnlockResource. At this stage,
relRes= [res1, res1]. As can be noticed, this liberation is
caused by an interruption. So, the attribute «cause» takes
the value interruptTask (cause= [terminateTask, interrupt-
Task]). Furthermore, since the task is interrupted, the priority
increases and will be 18, and the content of the attribute
priority becomes (priority= [17, 18]). Note that the priority
is equal to 18 as regards the stereotype «gaRelStep». T1
will not be interrupted pending a free computing resource,
but will rather interrupt a lower task which is T2. Next,
the processor proc2 will be available to the one to which
T1 will migrate. Normally, in this case interruptT=0ms, yet,
we assume that the context switch time is equal to 1ms.
This period of time will be indicated as a preemption time.
Then, this value will be added in the attribute «preemptT».
Therefore, at this level, the content of «preemptT» becomes
preemptT= [0ms, 1ms]. T1 will continue its running on
proc2. Its priority is 18 and «priority» attribute becomes
priority= [17, 17, 18]. First, T1 proceeds to lock the shared
resource res2 corresponding to proc2. Therefore, res2 will
be added to the attribute «acqRes» of the stereotype «gaAc-
qStep», as well as proc2 will be added to host (host= [proc1,
proc1, proc2]). Since the job T1 will continue running,
we add «resumeTask» to the attribute «cause». Then, the
content of «cause» will be cause= [T1Created, resumeTask,
resumeTask]. Subsequently, T1 is considered to be executed.
It will run for 16ms. This value will be added in the
attribute «execTime» of the stereotype «saStep». At this
level, execTime= [17ms, 3ms, 16ms]. T1 ends its running on
proc2 without being interrupted. So preemptT= [0ms, 1ms,
0ms].

In consequence, T1 frees the shared resource res2 within
cause= terminateTask. Then, at this step, the attribute



« gaWorkloadEvent, 
saStep »
T1Created

« gaAcqStep »
LockResource

« saStep »
ExecutionT1

« gaRelStep »
UnlockResourceDeadline=[(unit=ms, value=20)]preemptT=[(unit=ms, value=0), (unit=ms, value=1), (unit=ms, value=0)]readyT=[(unit=ms, value=0), (unit=ms, value=20), (unit=ms, value=24)]priority=[(value=17), (value=17), (value=18)]concurRes=[T1]host=[proc1, proc1, proc2]execTime=[(unit=ms, value=17), (unit=ms, value=3), (unit=ms, value=16)]servDemand=[executionTask]

relRes=[res1, res1, res2]priority=[(value=17), (value=18), (value=18)]concurRes=[T1]host=[proc1, proc1, proc2]servDemand=[releaseResource, computingPrio]cause=[ terminateTask, interruptTask, terminateTask]
acqRes=[res1, res1, res2]priority=[(value=17), (value=17), (value=18)]]concurRes=[T1]host=[proc1, proc1, proc2]servDemand=[computingPrio, acquireResource]cause=[ T1Created, resumeTask, resumeTask]

« gaWorkloadEvent, 
saStep »
T2Created

« gaAcqStep »
LockResource

« saStep »
ExecutionT2

« gaRelStep »
UnlockResourceDeadline=[(unit=ms, value=20)]preemptT=[(unit=ms, value=0), (unit=ms, value=14), (unit=ms, value=0)]readyT=[(unit=ms, value=1), (unit=ms, value=21), (unit=ms, value=40)]priority=[(value=15), (value=15), (value=16)]concurRes=[T2]host=[proc2, proc2, proc2]execTime=[(unit=ms, value=15), (unit=ms, value=3), (unit=ms, value=12)]servDemand=[executionTask]

relRes=[res2, res2, res2]priority=[(value=15), (value=16), (value=16)]concurRes=[T2]host=[proc2, proc2, proc2]servDemand=[releaseResource, computingPrio]cause=[ terminateTask, interruptTask, terminateTask]
acqRes=[res2, res2, res2]priority=[(value=15), (value=15), (value=16)]]concurRes=[T2]host=[proc2, proc2, proc2]servDemand=[computingPrio, acquireResource]cause=[ T2Created, resumeTask, resumeTask]

ArrivalPattern=(periodic (period=(unit=ms, value=20))servDemand=[createTask, activateTask]
« gaWorkloadEvent, 

saStep »
T3Created

« gaAcqStep »
LockResource

« saStep »
ExecutionT3

« gaRelStep »
UnlockResourceDeadline=[(unit=ms, value=20)]preemptT=[(unit=ms, value=0), (unit=ms, value=0)]readyT=[(unit=ms, value=23), (unit=ms, value=43)]priority=[(value=20), (value=20)]concurRes=[T3]host=[proc1, proc1]execTime=[(unit=ms, value=10), (unit=ms, value=10)]servDemand=[executionTask]

relRes=[res1, res1]priority=[(value=20), (value=20)]concurRes=[T3]host=[proc1, proc1]servDemand=[releaseResource, computingPrio]cause=[ terminateTask, terminateTask]
acqRes=[res1, res1]priority=[(value=20), (value=20)]concurRes=[T3]host=[proc1, proc1]servDemand=[computingPrio, acquireResource]cause=[ T3Created, resumeTask]

ArrivalPattern=(periodic (period=(unit=ms, value=20))servDemand=[createTask, activateTask]

« saAnalysisContext »

ArrivalPattern=(periodic (period=(unit=ms, value=20))servDemand=[createTask, activateTask]

Figure 14. activity diagram annotated through SAM stereotypes



«cause» of the stereotype «gaRelStep» will be cause= [ter-
minateTask, interruptTask, terminateTask]. The task T1 ends
with the same priority 18. So, the «priority» attribute of the
stereotype «gaRelStep» will be priority= [17, 18, 18].

VII. CONCLUSION

Throughout this paper, we have proposed an extension
to MARTE profile since it does only support scheduling
algorithms for the partitioned approach. This improvement
affects mainly the sub-profile MARTE/GQAM and espe-
cially GQAM/SAM. It accounts for the multiplicities of
some existing attributes. This contribution makes MARTE
able to stand the multiprocessor scheduling algorithms for
the global approach. As future works, we seek to make a
formal scheduling analysis.
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