
Iterative Routing Algorithm of Inter-FPGA Signals for
Multi-FPGA Prototyping Plateform

Mariem Turki1, Zied Marrakchi2, Habib Mehrez1 and Mohamed Abid3

1 Laboratoire d’Informatique de Paris 6
Universite de Pierre et Marie Curie, Paris France

2 Flexras Technologies, Paris France
3 CES laboratory

Sfax University, Tunisia

Abstract. Over the last few years, multi-FPGA-based prototyping becomes neces-
sary to test System On Chip designs. However, the most important constraint of the
prototyping plateform is the interconnection resources limitation between FPGAs.
When the number of inter-FPGA signals is greater than the number of physical con-
nections available on the prototyping board, signals are time-multiplexed which de-
creases the system frequency. We propose in this paper an advanced method to route
all the signals with an optimized multiplexing ratio. Signals are grouped then routed
using the intra-FPGA routing algorithm: Pathfinder. This algorithm is adapted to
deal with the inter-FPGA routing problem. Many scenarios are proposed to obtain
the most optimized results in terms of prototyping system frequency. Using this tech-
nique, the system frequency is improved by an average of 12.8%.

1 Introduction

With the ever increasing complexity of system on chip circuits, the software and hardware
developers can no longer wait for the fabrication phase to test their designs[3]. Currently, it
is estimated that 60 to 80 percent of an ASIC design is spent performing verification [13].
FPGA-based prototyping is an important step in the creation of the final product and it is
the key to the success of marketing in time.
Because the silicon area overhead of FPGA versus ASIC technology has been measured to
be about 40x [14], FPGA programming technology requires that an ASIC logic design be
partitioned across multiple FPGA devices to achieve the necessary device logic capacity.
The number of FPGAs depends on the size of the prototyped system, ranging from a few
[4] up to 60 FPGAs [5].
In order to map the design into a multi-FPGA board, a partitioning tool decomposes the
design into pieces that will fit within the logic resources of individual FPGA devices. For some
systems, partitioning must be performed so that routing restrictions in terms of available
FPGA pin count and system topology are taken into account. Indeed, the number of I/Os
is increasing for each new FPGA generation, but the ratio FPGA I/Os over FPGA logic
capacity is decreasing. Thus, the number of signals which appear at the interface and which
should be transmitted between FPGAs, is significantly higher than the number of available
traces between those FPGAs.
The communication of interpartition signals between FPGAs is based on routing algorithms.
In this paper, we propose a new approach to route all the inter-FPGA signals, based on
signal multiplexing technique. To reach this goal, we use an iterative routing algorithm
called Pathfinder [6]. This algorithm was used to route the intra-FPGA signals. We extend
it for the inter-FPGA signals in order to obtain the best routing results.

2

The rest of the paper is organized as follows. Section 2 is dedicated to the related works
which addressed this problem. In section 3 we present the iterative routing algorithm used
initially to route the intra-FPGA signals. Section 4 explains the scenarios we propose to test
the performance of the routing algorithm. These scenarios includes the inter-FPGA signal
form and also the routing graph direction. In section 5 we describe the multiplexing IP that
we use to transfer the multiplexed signals. section 6 is dedicated to the experimental results
and to the evaluation of the the proposed methods. Finally, section 7 concludes the paper.

2 Related works

To address the inter-FPGA signal routing problem, authors in [8] proposed heuristic algo-
rithms to solve multiterminal routing signals in partial crossbar architectures. In [9], mul-
titerminal signals are decomposed into two-terminal nets. Therefore, routing algorithm is
applied to these nets.
Bab et al [1] introduced time multiplexing of I/O pins. Multiplexing means that multiple
design signals are assembled and serialized through the same board connection and then
de-multiplexed at the receiving FPGA. In [2], the authors proposed a new multiplexing ap-
proach based on the Integer Linear Programming. The main objective of this study is to
select which signals must be multiplexed and those which must not. Using this technique, all
signals are transmitted on each phase, but only those with updated values are considered.
Since all the signals are transmitted in each phase, the number of slot per phase is very
large, and the system frequency is decresed.

3 Inter-FPGA signals Routing Strategy

To route inter-FPGA signals, it is necessary to find an algorithm that can assign, in an
optimized manner, signals to the available resources. The technique mentioned in the sec-
tion II uses constructive routing algorithm. This algorithm keeps track of the reserved and
available physical connections between FPGAs. The router applies Dijkstra’s shortest path
algorithm [7] to determine the shortest path between the source and destination FPGAs.
If the shortest path exists, the capacity of all used resources is decremented, then they can
not be used to route the next signals. Else, router returns unsuccessfully. The main disad-
vantage of this method is: when a signal is already routed, it can not be rerouted to leave
the routing resources currently used to another signal that has the greatest need for these
resources. To avoid this problem, we route the inter-FPGA signals by an iterative routing
algorithm. Among existing techniques, The Pathfinder routing algorithm seems to be best
suited to our problem as it offers a compromise between performance and routability goals.

3.1 Routing graph

Since we have chosen Pathfinder to route all inter-FPGA signals, our interest was about the
modelling of the multi-FPGA board. Therefore, we chose to model all the routing resources
by an oriented routing graph G(V, E). Like shown on Figure 1, the set of vertices V=v1,vn
in the graph represents the I/O pins of all FPGAs, but also, each FPGA is represented by
a top vertex. The set of edges E=e1,, en represents all the inter-FPGA connections. An
unidirectional connection is modeled by a directed edge while a bidirectionnal connection(for
example between a vertex and a top vertex) is represented by two directed edges.

3.2 Routing algorithm: Pathfinder

Pathfinder is used primarily for routing intra-FPGA signals. We adapt it to deal with the
inter-FPGA signals. Pathfinder uses an iterative, negotiation-based approach to successfully

3

Fig. 1. Modelling routing resources as a routing graph

route all the signals. During the first routing iteration, the signals are freely routed without
paying attention to resource sharing. Individual signals are routed using Dijkstra’s shortest
path algorithm [7]. At the end of the first iteration, resources may be congested because
multiple signals have used them. During subsequent iterations, the cost of using a resource
is increased, based on the number of signals that share the resource, and the history of
congestion on that resource. Thus, signals are forced to negotiate for routing resources. If a
resource is highly congested, nets which can use lower congestion alternatives are forced to
do so. On the other hand, if the alternatives are more congested than the resource, then a
signal may still use that resource.
Observing the final routing results, we notice that inter-FPGA signals can be directly routed
between source and destination FPGAs, or intermediate through-hops may be necessary.

4 Routing algorithm adaptation

Taking into account some problems to be detailed later, we adapt our routing approach to
the new routing topology. In this section, we discuss the proposed solutions and the various
changes we make.

4.1 Signal direction conflicts

The Pathfinder routing algorithm processes each signal independently. Each routing resource
(node) should be shared by more than one signal. Signals that share the same resource are
multiplexed together. As mentioned above, we model our architecture by a bidirectional
routing graph. This causes direction conflicts since the signals sharing the same resources
can have different directions.

Unidirectionnal routing graph To avoid this problem, we apply the Pathfinder routing
algorithm on a unidirectional graph. The idea is to assign a definite direction to all physical
wires. In the routing graph, this is translated by a single edge between each pair of nodes.
Figure 2-(a) represents the routing flow on a unidirectionnal graph. The first generates

the unidirectionnal graph depending on the number of inter-FPA signals between each pair.
The number of physical wires that transmit direct (respectively indirect) signals between
two FPGAs, is proportional to the number of direct (respectively indirect) signals between
these two FPGAs. After calculating the multiplexing ratio, the capacity of all nodes is set
to mux ratio. Finally, Pathfinder routing algorithm tries to route all the signals. If a feasible
solution exists, the mux ratio parameter is decremented and the router tries to re-route the
signals with the new value of mux ratio. Otherwise, the router stops with the best solution
found.

4

Start Pathfinder

Compute initial mux_ratio

Bidirectional routing graph

mux_ratio −−

 modeling

Create GSignals

feasible
Routing?

Yes

No

Exit with best
mux_ratio

b)Routing flow for a bidirectional graph

Start Pathfinder

Compute initial mux_ratio

mux_ratio

Unidirectional routing graph
 modeling

Set nodes capacity to

mux_ratio −−

feasible
Routing?

Yes

No
Exit with best

mux_ratio

a) Routing flow for a unidirectional graph

Fig. 2. Routing flows

Bidirectionnal routing graph The selection of the unidirectionnal wires proportionally
to the number of signal between each pair of FPGA is not optimized at all. For this reason
we keep the bidirectionnal graph and we combine signals into groups. Indeed, signals that
have the same source and the same destinations are grouped together in ”GSignals” and
are considered as a single signal. Each GSignal contains a maximum of mux ratio signals.
Therefore, the capacity of all resources in the routing graph is set to 1. The bidirectional
graph allows a better use for available routing wires of the multi-FPGAs prototyping board.
Figure 2-(b) presents the steps to route inter-FPGA signals on a bidirectional routing graph.
The first step creates the graph using two arcs of opposite direction to represent each physical
wire. Next, the initial mux ratio parameter is calculated the same way as in the unidirec-
tional graph. This parameter determines the number of signals to be grouped together into
one GSignal. The pathfinder algorithm tries to route all the GSignals. Finally, the router
retains the routing solution with the best mux ratio.
This method avoids conflict management, since the Pathfinder algorithm prevents conges-
tion; at the end of every iteration, no node is used by more than one group of signals or
GSignals, which all have the same direction.

4.2 Signal representation

For better routing results, we notice that the choice of signal form is essential with two
possibilities to consider the signal shape: a multiterminal or a two-terminal signal.

Multiterminal signal The Pathfinder routing algorithm can route multiterminal nets.
In fact, the algorithm starts by selecting the source and the list of all destinations. After
routing the first one, Pathfinder moves to the next destination and so on. Although the
routing of multiterminal signals can be the optimal solution considering the number of used
I/O pins, the design is considered non flexible especially when grouping those signals into
GSignals. Indeed, in some cases, signals with the same source and the same destinations are
not numerous so that some GSignals do not contain the max number of signals, equal to
mux ratio.

Two-terminal signal In order to make the design more flexible, we decompose the multi-
terminal signals into branches with one source each and only one destination. The Pathfinder
routing algorithm tries to find separately a routing path to each branch.

5

Table 1. Comparison of routing strategies effects on prototyping system performance

Benchmark scenario1 scenario2 scenario3 scenario4

mux ratioR hop Freq mux ratioR hop Freq mux ratioR hop Freq mux ratioR hop Freq
(MHz) (MHz) (MHz) (MHz)

Circuit A 12 2 17.85 15 2 16.66 4 2 20.83 4 1 26.31
Circuit B 18 3 13.88 24 2 14.7 4 3 17.24 7 1 23.8
Circuit C 24 3 12.82 44 2 11.36 11 3 15.15 11 1 21.73
Circuit D 50 3 9.61 50 2 10.63 15 3 14.28 20 1 18.51
Circuit E 119 6 4.9 116 4 5.55 57 2 9.8 56 4 8.33
Circuit F 160 3 4.67 168 3 4.5 68 3 8.19 68 1 9.8
Circuit G 220 5 3.4 256 1 3.44 89 2 7.46 86 3 7.14

Table 2. Comparison between OAR and NCR strategies on system performance

Benchmarks OAR NCR Gain

R hop mux ratio Freq(MHz) R hop mux ratio Freq(MHz)

CPU50 occ30 0 9 29.41 0 9 29.41 0%
CPU125 occ50 2 16 16.66 1 16 20 20.04%
CPU150 occ30 3 24 12.82 1 29 15.62 21.84%
CPU150 occ50 2 51 10.41 1 51 11.62 11.65%
CPU375 occ80 2 51 10.41 1 51 11.62 11.65%
CPU375 occ85 2 79 8.06 2 69 8.77 8.8%
CPU700 occ80 2 134 5.61 2 109 6.49 15.68%

5 Experimental results

We use our benchmark generator [11] to generate several synthetic designs. The targeted
multi-FPGA prototyping board we use for the experiments is a DNV6F6PCIe from the DINI
group [12]. The inter-FPGA clock frequency is set to 500MHz. To map the designs into this
board, we use the WASGA partitioning flow provided by Flexras Technologies [10]. WASGA
partitions the designs and outputs the list of inter-FPGA signals that shoud be routed. After
routing these signals, WASGA generates a netlist for each FPGA. The resulting netlists are
re-entered into the FPGA flow to execute the place and route and the bitstream generation
individulally for each FPGA.
Table 1 shows the results for each routing scenarios described in section 4. These scenarios
are defined depending on the signal shape and the routing graph.

– In the scenario 1, multiterminal signals are routed on a unidirectional routing graph.
– In scenario 2, two-terminal branchs are routed into a unidirectional routing graph.
– In scenario 3, Signals are grouped into GSignals and routed into a bidirectional graph.
– In scenario 4, Branches are combined into groups and routed into a bidirectional graph.

In this experiment, we used benchmarks where 70% of signals are multiterminal ones. Results
show that routing on a bidirectional graph gives much better results since the router is more
free to select the routing path. On the other hand, routing multiterminal signals is not always
optimized even if the mux ratio of scenario 3 is sometimes less than the one of scenario 4,
but using more routing hop penalizes the system frequency.

Since we have demonstrated that Senario 4 gives usually the best results, we apply
Pathfinder and the obstacle avoidance routing algorithms to route inter-FPGA signals, all
with one source and one destination (branch) and grouped into GSignals. Table 2 shows
the results of comparison. OAR means Obstacle Avoidance Routing and NCR refers to

6

Negotiated Congestion Routing. Results show the important impact of the NCR iterative
routing and its efficiency to improve system performance. The frequency is increased on
average by 12.8% and the impact of NCR is important for highly congested partitioning
results. In fact thanks to its iterative aspect, it avoids easily local minima and reduces the
path length from a source FPGA to a destination FPGA. In addition, it leads to a good
tradeoff between maximum multiplexing ratio and routing hops.

6 Conclusion

Prototyping is no longer optional due to the cost of chips and difficulty to simulate huge de-
signs. To get a design for prototype more efficient, the highest frequency should be reached.
The system frequency depends on the way the inter-FPGA signals are routed. In this pa-
per, we presented our approach to route these inter-FPGA signals. We extend the Pathfinder
routing algorithm to deal with the inter-FPGA signals. These signals are grouped into GSig-
nals where each one has 1 source and only 1 destination. Compared to common obstacle
avoidance algorithms, we obtain a significant prototyping system frequency improvement of
12.8%.

References

1. R. Tessier et al. The virtual Wires Emulation System: A Gate-Efficient ASIC Prototyping
Environement.” International Workshop on Field-Programmable Gate Array, Berkeley, CA,
February 1994, ACM.

2. M. Inagi, Y. Takashima, and Y. Nakamura, ”Globally optimal time-multiplexing in inter-
FPGA connections for accelerating multi-FPGA systems”, in Proc. FPL, 2009, pp.212-217.

3. C. Huang, Y. Yin, and C. Hsu, ”Soc hw/sw verification and validation,” in Proc. of the
16th Asia and South Pacific Design Automation Conference (ASP-DAC), 2011, pp. 297-300

4. H. Krupnova, ”Mapping multi-million gate socs on fpgas: industrial methodology and ex-
perience,” in Proc. of Design, Automation and Test in Europe Conference and Exhibition,
vol. 2, 2004, pp. 1236-1241.

5. S. Asaad, R. Bellofatto, B. Brezzo, C. Haymes, M. Kapur, B. Parker, T. Roewer, P. Saha, T.
Takken, and J. Tierno, ”A cycle-accurate, cycle reproducible multi-fpga system for accelerat-
ing mutli-core processor simulation,” in Proc. of the ACM/SIGDA international symposium
on Field Programmable Gate Arrays, 2012, pp. 153-162.

6. L. McMurchie and C. Ebeling, ”PathFinder: A Negotiation-Based Performance-Driven
Router for FPGAs”, International Workshop on Field Programmable Gate Array, 1995.

7. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. Cambridge, Massachusetts London, England, 2001

8. A. Ejnioui and N. Ranganathan, ”Multiterminal net routing for partial crossbar-based
multi-FPGA systems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no.
1, pp. 71-78, Feb. 2003

9. W. K. Mak and D. F. Wong, ”Board-level multiterminal net routing for FPGA-based logic
emulation,” ACM Trans. Design Automation of Electron. Syst., vol. 2, pp. 151-157, Apr.
1997.

10. [online]. Available: http//www.flexras.com
11. M. Turki, Z. Marrakchi, H. Mehrez, M. Abid, ”Towards Synthetic Benchmarks Generator for

CAD Tool Evaluation,” 8th confrence on Ph.D. Research in Microelectronics and Electronics
(PRIME), 2012

12. [Online]. Available: http://www.dinigroup.com/new/products.php
13. M. Santarini. ASIC prototyping: Make versus buy. EDN, November 21, 2005.
14. I. Kuon, J. Rose. Measuring the gap between FPGAs and ASICs. International Symposium

on Field-Programmable Gate Array, February 2006

